

2022 SETO PEER REVIEW

Concentrating Solar- thermal Power

Avi Shultz CSP Program Manager

Concentrating Solar-Thermal Power Team

Avi Shultz

Matt Bauer

Christine Bing

Patricia Clark

Tiffany Jones

Jonathan "Jo" Melville

Shane Powers

Andru Prescod

Kamala Raghavan

Rajgopal "Vijay" Vijaykumar

CSP Goals

- Achieve LCOE goal through high efficiency power cycles operating at > 700 °C
- Reduce the levelized cost of heat, with thermal energy storage, to \$0.02/kWhth, across a range of temperatures relevant to industrial processes

Active Funding Programs

FOA/Year	Funding	Topics	I
. Only real	\$30 million	Solar R&R	
SETO FY 2021 PV/CSP FOA			_ I
,		PERFORM/REFORM	-
	\$3 million	-	_
FY 2022-24 National Lab Call	\$25 million	Heliostat Consortium	_
	\$25 million	Lab R&D	
Solar Desal Prize Round 2 (2021)	\$5 million		
SETO FY 2020 FOA	\$39 million	Integrated TESTBED	_
Solar Desal Prize Round 1 (2020)	\$10 million		_
	\$30 million	Firm TES	_
SETO FY 2019 FOA		Materials and Manufacturing	_
		Autonomous Collector Fields	_
FY 2019-21 National Lab Call	\$3 million	Lab Core Capabilities	_
	\$23 million	Lab R&D	_
Gen3 CSP FOA and Lab Call (2018) \$85 million			
Solar Desalination (2018)	\$21 million	_	
CIDC (no accomina a)	~ \$3 million		
SIPS (recurring)	per round		
SBIR (recurring)	\$XX million	_	
Incubator (recurring)	\$XX million	_	

Documenting CSP Best Practices

Process Enhancement and Refinement for Operations, Reliability, and Maintenance (CSP PERFORM)

Topic	Project / PI	Lead Organization
Steam Generator Reliability	Improved O&M Reliability for CSP Plants through Application of Steam Generator Damage Mechanisms Theory & Practice; Pl: Michael Caravaggio	EPRI
Nitrate salt tanks and components	Improved Design Standard for High Temperature Molten Nitrate Salt Tank Design; Pl: Javier Alvarez	IDOM
	Failure Analysis for Molten Salt Thermal Energy Storage Tanks for In-Service CSP Plants; Pl: Julian Osorio	NREL
	Design Basis Document/Owners Technical Specification for Nitrate Salt Systems in CSP Projects; Pl: Bruce Kelly	Solar Dynamics
Sensors	Evaluation of High-Temperature Sensors for Molten Solar Salt Applications; Pl: Jon Lubbers	Sporian
Plant design optimization	CSP Plant Optimization Study for the California Power Market; Pl: Hank Price	Solar Dynamics
Operator performance	Performance Improvement in CSP Plant Operations; PI: Michael Wagner	U. Wisconsin

New projects (beginning in 2022) are addressing highest priority issues in CSP commercial reliability

Collectors — Past and Current Efforts

Green Parabolic Trough Collector

Two design elements to achieve very low cost.

1) the use of a special grade of wood as the structural material, and the geometric arrangement of the structural members in a material-efficient typology.

UFACET/NIO for Heliostats

UAV measurements of slope and canting errors in heliostats. Two approaches, using 1) a target heliostat and 2) the tower to determine errors.

Focused efforts have prioritized:

- Solar field capital cost reductions
 - Low-cost material replacements
 - Simplified heliostat and trough designs for faster assembly field deployment
- Improved metrology and characterization
 - Accelerate field calibration for improved energy output
 - Minimize operating costs through automated solar field analysis and controls

Wind Loading on Heliostats

Goal is to better understand the physics drivers underlying the wind-loading experienced by CSP collector and support structures. Includes characterization of the prevailing wind conditions and resulting operational loads and the ability to predict wind-loading in deep-array installations.

Collectors – Heliostat Consorti

U.S. Department of Energy *** HelioCon Heliostat Consortium for Concentrating Solar-Thermal Power

Consortium Goals

- Accelerate innovation in heliostat development and reliability
- Develop National Laboratory core capabilities and infrastructure.
- Encourage collaboration between the CSP industry and US researchers

Consortium Structure

- 5-year, \$25 million collaboration between NREL, Sandia, and ASTRI
- Periodic RFPs for collaboration between HelioCon and industry/academic researchers
- Emphasis on developing a diverse research and commercial workforce in CSP

Advanced Power Cycles

Programmatic Objectives

- Develop and demonstrate supercritical CO₂ power blocks consistent with > 50% net thermal-to-electric efficiency, including:
 - Turbomachinery
 - Recuperators
 - Air cooling capability
 - Primary heat exchangers integrated with TES
- Validate turbomachinery at MW_e scale

- Support R&D on materials and manufacturing to reduce cost to < \$900 kW_e for systems with turbine inlet temperature > 700 ° C
- Demonstrate commercially-relevant systems with existing materials – at turbine inlet temperature approx. 600°C

sCO₂ Power Cycles – Completed and Ongoing Research

Component	Organization(s)	Status
Expander	Southwest Research Institute, GE Research	Successfully tested at 1 MW _e , 715°C for several hours
Compressor / Expander	Southwest Research Institute, Hanwha Power Systems	Successfully tested compressor and expander, at 1 $\rm MW_e$ to 715 °C; compressor inlet temperature to 36-37 °C
Compressor	GE Research, Southwest Research Institute	Successfully tested compressor to inlet temperature 35°C
Seals	Southwest Research Institute, Eagle Burgmann	550-700°C dry gas seals being developed and tested
Bearings	GE Research	Gas bearing testing at large size
Air Cooler	Southwest Research Institute, Vacuum Process Engineering	Testing of MW _{th} sized air cooler

Remaining R&D challenges for power cycles > 700 °C:

- Low-cost manufacturing and fabrication for casing, recuperators, valves, air coolers
- Improved performance of seals and bearings to meet efficiency targets

Primary Heat Exchanger – Completed and Ongoing

Research

Description	Organizations	Status
100 kW _{th} Moving Bed	Sandia, Solex, VPE	Tested at 550-715°C for several hours; design improvements identified to overcome low heat transfer coefficients measured
20 kW _{th} Moving Bed	Sandia, Solex, VPE	Successfully tested stainless steel heat exchanger at 500°C to 200 W/m²-K
≤50 kW _{th} Moving bed	Sandia, Solex, VPE	High alloy heat exchange procured for testing
100 kW _{th} Fluidized bed	Sandia, Babcock & Wilcox, TU-Wien	Build and test heat exchanger at SNL 100 $\mbox{kW}_{\mbox{\scriptsize th}}$ facility
≤20 kW _{th} Moving Bed	Sandia, Argonne, Ex-one	SiC heat exchanger being built for 500-700°C application
14 MW _{th} Moving bed	Solex	Scaleup of large size stainless steel heat exchanger

Remaining R&D challenges for primary heat exchangers > 700 °C:

- Nickel alloy PHE cost exceeds 300 \$/kWth; 200-400 W/m2.K heat transfer coeff. unproven
- No functional molten salt-sCO2 heat exchanger design for testing

Integrated TESTBED (Thermal Energy Storage and Brayton Cycle Equipment Demonstration)

TESTBED

- First-of-a-Kind sCO₂ facility integrated with TES;
 heat input from solar field
- 5 MW_e sCO₂ cycle at 600°C turbine inlet
- Heat input from 36,000 heliostats, 26.3 MW_{th}
- 3 receivers 13.4 MW_{th} each, supply heat for 8 hour, 213 MWh_{th} solid particle TES

TESTING CAPABILITY

- Recompression Brayton Cycle (RCBC) operation
- RCBC control and integration with TES
- Turbomachinery durability and operation
- FOAK TES and heat exchanger

Gen3 CSP: Pathway Selection

TOPIC 1

- Sandia National Laboratories
- National Renewable Energy Laboratory
- Brayton Energy

In March 2021, SETO announced that Sandia would receive \$25 million to construct a MW-scale test facility at the National Solar Thermal Test Facility in Albuquerque, NM

Gen3 CSP: Pathway Selection

TOPIC 1

Sandia National Laboratories

PHASE 1 PHASE 2 PHASE 3

2022 SETO Peer Review

Strengths:

- System simplicity for construction, operation, and reliability
- Wide operating range and opportunity for further temperature increases
- Potential relevance to other solar thermal applications

Remaining Gaps:

- Receiver optimization (also for controlled environments)
- Particle cost
- Demonstrations of flow control and particle handling at scale
- Increasing system ΔT

Gen3 CSP: Future Needs for Liquid and Gas Pathways

TOPIC 1

Sandia National Laboratories

 National Renewable Energy Laboratory

Brayton Energy

Liquid Pathway

- Chloride salt is a promising low-cost TES media for multiple applications
- Validation of TES tank designs and chloride corrosion detection and controls
- Sodium receivers integrated with nitrate salt TES may lead to future adoption of chlorides

Gas Pathway

- More testing needed to validate reliability of receivers for high-flux applications
- Particle TES design, and particle-to-gas HXer could benefit a wide variety of future applications
- System designs needed to minimize pressure drop

CSP High Temperature Components: Receivers and Reactors

Programmatic Goal: Support solar receiver and reactor de-risking frameworks to enable new heat transfer media, higher temperature systems, and solar thermochemistry

Active Research

- Particle Based Receivers
- Solar Fuels
- Ammonia Synthesis
- 750°C power cycles
- High temperature materials
- Lifetime modeling tools
- MW_{th} testing campaigns

Thermal Energy Storage Enabled Systems

High Temperature Characterization, Validation, Monitoring

Intrinsic Properties in Lab Environment

- Thermal transport, material flow, castability
- Fatigue Limit, Yield Strength

Accelerated Lifetime Property Determination

- Performance property degradation
- Chemical and mechanical failure

In Operation Local Property Identification

- Protype performance bankability
- Technology scale up de-risking

Commercial performance monitoring

- Control System Feedback and Operation
- Maintenance Planning

Andrew Schrader University of Dayton

Greg Glatzmaier NREL

Challenges:

- 1. Harsh Environments
- 2. Nuanced Information
- Data Reproducibility (FAIR Doctrine)
- 4. Environment Reproducibility
- 5. Long Term (Endurance) Testing

CSP High Temperature Components and Characterization - Materials

Materials see harsh service conditions that include temperature, pressure, chemical (salts, sCO₂), thermal cycling.

We seek continuous improvement in thermo-mechanical properties (Creep, Fatigue (low cycle), Creep-Fatigue, Tensile strength, Ultimate strength, Plastic deformation) and chemical properties (Corrosion, Erosion, (De)Carburization, Oxidation, liquid metal embrittlement)

Solar Thermal for Decarbonization of Industrial Process Heat

Priority Research Areas

- Reduce the levelized cost of heat, with thermal energy storage, in temperature ranges of high priority to industrial processes
 - Roughly \$0.02/kWh_{th} would be competitive with natural gas
- Improve the **thermal efficiency** of solarthermal-coupled processes
- Develop long-duration, thermochemical storage of solar energy (i.e. solar fuels and chemical commodities)

American Made Challenges: Solar Desalination Prize

Accelerate commercialization of solar thermal desalination systems through successful demonstration of:

- Low-cost solar thermal collectors and thermal energy storage
- Innovative, highly efficient thermal desalination technologies

Solar Fuels for Energy Storage, Transport, Delivery

<u>Hydrogen</u>

- Amazing gravimetric energy density
- Chemical feedstock for NH₃, C_n fuels
- Multiple well-studied synthesis routes
- Abysmal volumetric energy density

Ammonia

- Acceptable energy density
- Plugs into legacy fertilizer infrastructure
- Potential hydrogen storage feedstock
- Unclear outlook as chemical fuel

Hydrocarbons

- High gravi/volumetric energy density
- Compatible w/ legacy infrastructure
- Requires CCS to reach net 0 emissions
- Product selectivity can be challenging

Funding Modalities for Targeted Impact

SIPS*

Seedling Projects

Up to \$400k over 18 months

Streamlined Application Process

Reduced Application Steps, Documents, and Time

30 Projects Funded Since 2018

- Significantly increased the CSP R&D Community
- Increased Diversity of Institutions and Researchers

Strategic Importance

- Solutions for unique CSP frameworks, or
- Innovate to solve known programmatic gaps

SOLAR** Tiers

**Scalable Outputs for Leveraging Advanced Research

^{*}Small Innovative Projects in Solar